15 research outputs found

    Control flow graphs for real-time systems analysis: reconstruction from binary executables and usage in ILP-based path analysis

    Get PDF
    Real-time systems have to complete their actions w.r.t. given timing constraints. In order to validate that these constraints are met, static timing analysis is usually performed to compute an upper bound of the worst-case execution times (WCET) of all the involved tasks. This thesis identifies the requirements of real-time system analysis on the control flow graph that the static analyses work on. A novel approach is presented that extracts a control flow graph from binary executables, which are typically used when performing WCET analysis of real-time systems. Timing analysis can be split into two steps: a) the analysis of the behaviour of the hardware components, b) finding the worst-case path. A novel approach to path analysis is described in this thesis that introduces sophisticated interprocedural analysis techniques that were not available before.Echtzeitsysteme müssen ihre Aufgaben innerhalb vorgegebener Zeitschranken abwickeln. Um die Einhaltung der Zeitschranken zu überprüfen, sind für gewöhnlich statische Analysen der schlimmsten Ausführzeiten der Teilprogramme des Echtzeitsystems nötig. Diese Arbeit stellt die Anforderungen von Echtzeitsystem an den Kontrollflussgraphen vor, auf dem die statischen Analysen arbeiten. Ein neuartiger Ansatz zur Rückberechnung von Kontrollflußgraphen aus Maschinenprogrammen, die häufig die Grundlage der WCET-Analyse von Echtzeitsystemen bilden, wird vorgestellt. WCET-Analysen können in zwei Teile zerlegt werden: a) die Analyse des Verhaltens der Hardwarebausteine, b) die Suche nach dem schlimmsten Ausführpfad. In dieser Arbeit wird ein neuartiger Ansatz der Pfadanalyse vorgestellt, der für ausgefeilte interprozedurale Analysemethoden ausgelegt ist, die vorher hier nicht verfügbar waren

    Control flow graphs for real-time systems analysis: reconstruction from binary executables and usage in ILP-based path analysis

    Get PDF
    Real-time systems have to complete their actions w.r.t. given timing constraints. In order to validate that these constraints are met, static timing analysis is usually performed to compute an upper bound of the worst-case execution times (WCET) of all the involved tasks. This thesis identifies the requirements of real-time system analysis on the control flow graph that the static analyses work on. A novel approach is presented that extracts a control flow graph from binary executables, which are typically used when performing WCET analysis of real-time systems. Timing analysis can be split into two steps: a) the analysis of the behaviour of the hardware components, b) finding the worst-case path. A novel approach to path analysis is described in this thesis that introduces sophisticated interprocedural analysis techniques that were not available before.Echtzeitsysteme müssen ihre Aufgaben innerhalb vorgegebener Zeitschranken abwickeln. Um die Einhaltung der Zeitschranken zu überprüfen, sind für gewöhnlich statische Analysen der schlimmsten Ausführzeiten der Teilprogramme des Echtzeitsystems nötig. Diese Arbeit stellt die Anforderungen von Echtzeitsystem an den Kontrollflussgraphen vor, auf dem die statischen Analysen arbeiten. Ein neuartiger Ansatz zur Rückberechnung von Kontrollflußgraphen aus Maschinenprogrammen, die häufig die Grundlage der WCET-Analyse von Echtzeitsystemen bilden, wird vorgestellt. WCET-Analysen können in zwei Teile zerlegt werden: a) die Analyse des Verhaltens der Hardwarebausteine, b) die Suche nach dem schlimmsten Ausführpfad. In dieser Arbeit wird ein neuartiger Ansatz der Pfadanalyse vorgestellt, der für ausgefeilte interprozedurale Analysemethoden ausgelegt ist, die vorher hier nicht verfügbar waren

    Design of a WCET-Aware C Compiler

    Get PDF
    This paper presents techniques to tightly integrate worst-case execution time information into a compiler framework. Currently, a tight integration of WCET information into the compilation process is strongly desired, but only some ad-hoc approaches have been reported currently. Previous publications mainly used self-written WCET estimators with very limited functionality and preciseness during compilation. A very tight integration of a high quality industry-relevant WCET analyzer into a compiler was not yet achieved up to now. This work is the first to present techniques capable of achieving such a tight coupling between a compiler and the WCET analyzer aiT. This is done by automatically translating the assembly-like contents of the compiler\u27s low-level intermediate representation (LLIR) to aiT\u27s exchange format CRL2. Additionally, the results produced by the WCET analyzer are automatically collected and re-imported into the compiler infrastructure. The work described in this paper is smoothly integrated into a C compiler environment for the Infineon TriCore processor. It opens up new possibilities for the design of WCET-aware optimizations in the future. The concepts for extending the compiler infrastructure are kept very general so that they are not limited to WCET information. Rather, it is possible to use our structures also for multi-objective optimization of e.g. best-case execution time (BCET) or energy dissipation

    Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement

    Get PDF
    The performance and power efficiency of multi-core processors are attractive features for safety-critical applications, as in avionics. But increased integration and average-case performance optimizations pose challenges when deploying them for such domains. In this paper we propose a novel approach to compute a interference-sensitive Worst-Case Execution Time (isWCET) considering variable accesses delays due to the concurrent use of shared resources in multi-core processors. Thereby we tackle the problem of temporal partitioning as it is required by safety-critical applications. In particular, we introduce additional phases to state-of-the-art timing analysis techniques to analyse an applications resource usage and compute an interference delay. We further complement the offline analysis with a runtime monitoring concept to enforce resource usage guarantees. The concepts are evaluated on Freescale's P4080 multi-core processor in combination with SYSGO's commercial real-time operating system PikeOS and AbsInt's timing analysis framework aiT. We abstract real applications' behavior using a representative task set of the EEMBC Autobench benchmark suite. Our results show a reduction of up to 75% of the multi-core Worst-Case Execution Time (WCET), while implementing full transparency to the temporal and functional behavior of applications, enabling the seamless integration of legacy applications

    ILP-based Interprocedural Path Analysis

    No full text
    Program analysis usually works on control flow graphs (CFGs) and on a call graph (CG). The standard CGs contain one node for each function, but for precise analyses, it may be desirable to distinguish function invocations by their execution history

    Generating Decision Trees for Decoding Binaries

    No full text
    Tools reading binary code, like analysers, debuggers, disassemblers, etc., need to decode the target's machine code. A decision tree is often used to represent the decoding function. Manually writing a decoder is a lengthy and error-prone task. It is desirable to be able to use the vendor's instruction code manual and to easily transform the documentation into a specification that a tool can use to generate a decoder. This pape

    Design of a WCET-Aware C Compiler

    No full text
    This paper presents techniques to tightly integrate worstcase execution time (WCET) information into a compiler framework. Currently, a tight integration of WCET information into the compilation process is strongly desired, but only some ad-hoc approaches have been reported currently. Previous publications mainly used self-written WCET estimators with very limited functionality and preciseness during compilation. A very tight integration of a high quality industry-relevant WCET analyzer into a compiler was not yet achieved up to now. This work is the first to present techniques capable of achieving such a tight coupling between a compiler and the WCET analyzer aiT. This is done by automatically translating the assembly-like contents of the compiler’s low-level intermediate representation (LLIR) to aiT’s exchange format CRL2. Additionally, the results produced by the WCET analyzer are automatically collected and re-imported into the compiler infrastructure. The work described in this paper is smoothly integrated into a C compiler environment for the Infineon TriCore processor. It opens up new possibilities for the design of WCET-aware optimizations in the future. The concepts for extending the compiler infrastructure are kept very general so that they are not limited to WCET information. Rather, it is possible to use our structures also for multi-objective optimization of e. g. best-case execution time (BCET) or energy dissipation. 1
    corecore